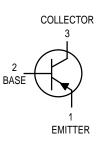
MPS2907


*Motorola Preferred Device

CASE 29-04, STYLE 1 TO-92 (TO-226AA)

MPS2907A*

General Purpose Transistors

PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	MPS2907	MPS2907A	Unit	
Collector-Emitter Voltage	VCEO	-40	-60	Vdc	
Collector-Base Voltage	VCBO	-60		Vdc	
Emitter-Base Voltage	VEBO	-5.0		Vdc	
Collector Current — Continuous	IC	-600		mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-500 to +150		°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	200	°C/W
Thermal Resistance, Junction to Case	R _θ JC	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Charact	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS				•	
Collector-Emitter Breakdown Voltage(1) ($I_C = -10$ mAdc, $I_B = 0$)	MPS2907 MPS2907A	V(BR)CEO	40 60		Vdc
Collector–Base Breakdown Voltage ($I_C = -10 \ \mu Adc$, $I_E = 0$)		V(BR)CBO	-60	-	Vdc
Emitter-Base Breakdown Voltage (I _E = -10 μ Adc, I _C = 0)		V(BR)EBO	-5.0	-	Vdc
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -0.5 Vdc)		ICEX	—	-50	nAdc
Collector Cutoff Current ($V_{CB} = -50$ Vdc, $I_E = 0$) ($V_{CB} = -50$ Vdc, $I_E = 0$, $T_A = 150^{\circ}C$)	MPS2907 MPS2907A MPS2907 MPS2907A	ГСВО	 	-0.02 -0.01 -20 -10	μAdc
Base Current (V _{CE} = -30 Vdc, V _{EB(off)} = -0.5 Vdc)		lΒ	_	-50	nAdc

1. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

MPS2907 MPS2907A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit			
ON CHARACTERISTICS								
DC Current Gain $(I_C = -0.1 \text{ mAdc}, V_{CE} = -1.0 \text{ mAdc}, V_{CE} = -1.0$		MPS2907 MPS2907A MPS2907	hFE	35 75 50		_		
$(I_{C} = -10 \text{ mAdc}, V_{CE} = -10 mAdc$		MPS2907A MPS2907 MPS2907 MPS2907A		100 75 100				
$(I_C = -150 \text{ mAdc}, V_{CE})$ $(I_C = -500 \text{ mAdc}, V_{CE})$		MPS2907, MPS2907A MPS2907 MPS2907A		100 30 50	300 — —			
Collector-Emitter Saturat ($I_C = -150 \text{ mAdc}, I_B = -$ ($I_C = -500 \text{ mAdc}, I_B = -$	–15 mAdc)		V _{CE(sat)}	_	-0.4 -1.6	Vdc		
Base-Emitter Saturation ($I_C = -150$ mAdc, $I_B = -$ ($I_C = -500$ mAdc, $I_B = -$	–15 mAdc)		V _{BE(sat)}	_	-1.3 -2.6	Vdc		
SMALL-SIGNAL CHA	RACTERISTICS		•					
Current–Gain — Bandwidth Product ^{(1),} (2) (I _C = –50 mAdc, V _{CE} = –20 Vdc, f = 100 MHz)		fT	200	_	MHz			
Output Capacitance ($V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{obo}	_	8.0	pF			
Input Capacitance (V _{EB} = -2.0 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	—	30	pF			
SWITCHING CHARAC	TERISTICS		· ·		-	-		
	(V _{CC} = -30 Vdc, I _C = -150 mAdc, I _{B1} = -15 mAdc) (Figures 1 and 5)		ton	_	45	ns		
Delay Time			td		10	ns		
Dian Time					40			

Delay Tille		۲d		10	115
Rise Time		tr	_	40	ns
Turn–Off Time	$(V_{CC} = -6.0 \text{ Vdc}, I_C = -150 \text{ mAdc},$	^t off	_	100	ns
Storage Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$ (Figure 2)	t _s	_	80	ns
Fall Time		t _f	_	30	ns

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

2. f_{T} is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

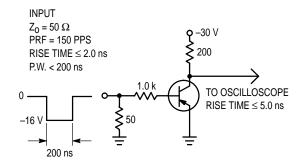


Figure 1. Delay and Rise Time Test Circuit

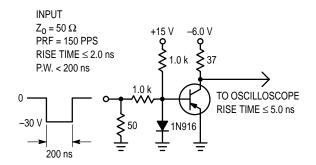
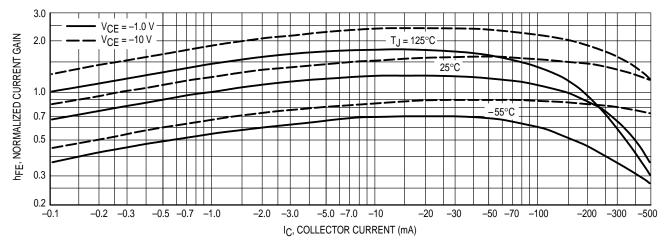
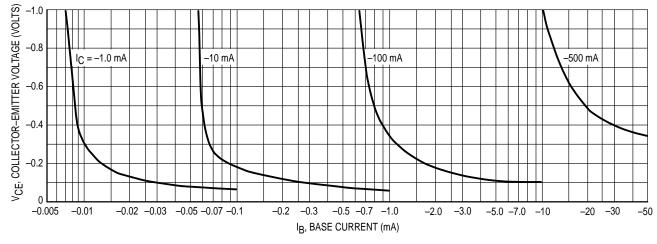
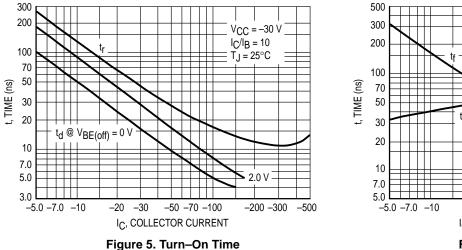




Figure 2. Storage and Fall Time Test Circuit


TYPICAL CHARACTERISTICS

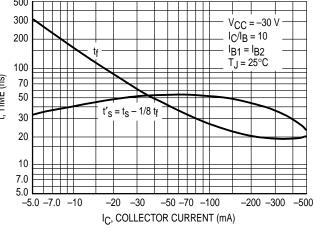
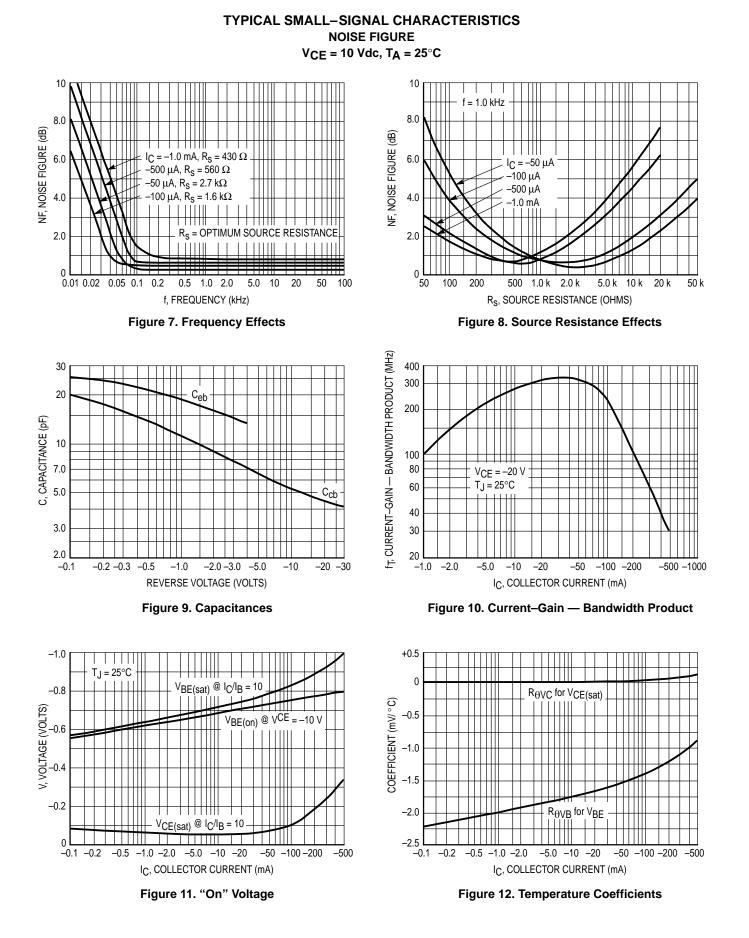
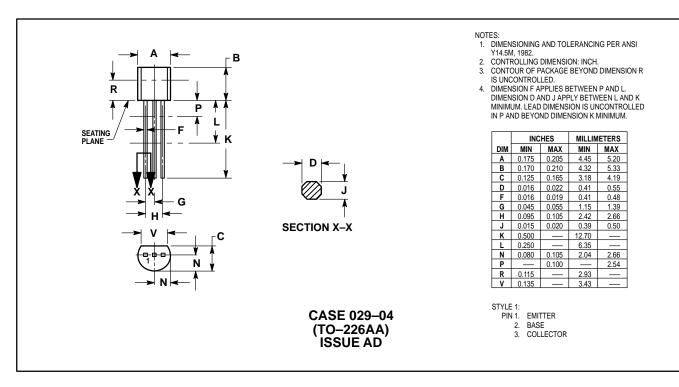




Figure 6. Turn–Off Time

PACKAGE DIMENSIONS



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(a)** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

